Pathogenic Bacteriology

Introduction

What the class will cover:

- Clinically significant bacteria
 - Morphological characteristics
 - Biochemical characteristics
 - Signs and symptoms they cause in the host they are infecting
 - Virulence factors
 - Pathophysiology of infection

- Propensity to cause disease, i.e., how likely are they to cause disease
 - Opportunistic pathogens only cause disease in immunocompromised hosts
 - AIDs patients
 - Transplant patients on immunosupressive drugs
 - Cancer patients undergoing chemotherapy
 - Patients who are already ill
 - Opportunistic pathogens are often organisms that are typically normal flora.
 - Staphylococcus epidermidis and intravenous catheters
 - Given the right circumstances any organism can be invasive and lethal

- Frank pathogens are always associated with disease
 - Neisseria gonorrhoeae
 - Shigella species
- Facultative pathogens fall between the two extremes (opportunistic and frank) and the majority of organisms that cause disease fall into this group
 - Staphylococcus aureus
 - E. coli

- Various factors involved in the host-parasite interaction determine whether an organism will cause disease in the host:
 - Virulence factors of the bacteria including:
 - Capsules
 - Pili
 - IgA protease production
 - Iron capturing ability
 - Production of coagulase
 - Production of toxins
 - Ability to survive inside phagocytic cells

- Degree of resistance of the host
 - Age
 - Gender
 - Physical health
 - Mental health
 - Antibiotic therapy that disrupts the normal balance between the host and normal flora
- From the organisms point of view, the most successful pathogen is NOT the one that inflicts the most extensive damage on the host, but rather the one that can establish a balanced pathogenicity with the host. Parasites that kill the host will eventually lead to their own extinction.

- Severe human infections often from zoonotic organisms
 - No balanced pathogenicity
 - Humans irrelevant for organism's survival Humans simply serve as accidental hosts.
 - Bubonic plaque
 - Anthrax
 - Leptospirosis
- Based on your knowledge of normal flora and the propensity of organisms to cause disease, you may be asked to determine the likelihood that a clinical isolate is causing disease. Things to consider are:
 - Site from which the organism was isolated (*E. coli* in G.I. tract versus the urinary tract)
 - Relative numbers of organism isolated
 - Age of patient

What the class will cover:

- Media
 - Content
 - Usage
 - Appropriate positive and negative controls
 - What information can be gained by using the media
 - How to read results on the media

What the class will cover:

- What is the difference between pathogenicity and virulence?
 - Pathogenicity is the potential to cause disease and is applied to groups or species of organisms
 - Virulence is the degree of pathogenicity within a group or species and is measurable by the LD₅₀ or the ID₅₀.

LD_{50}

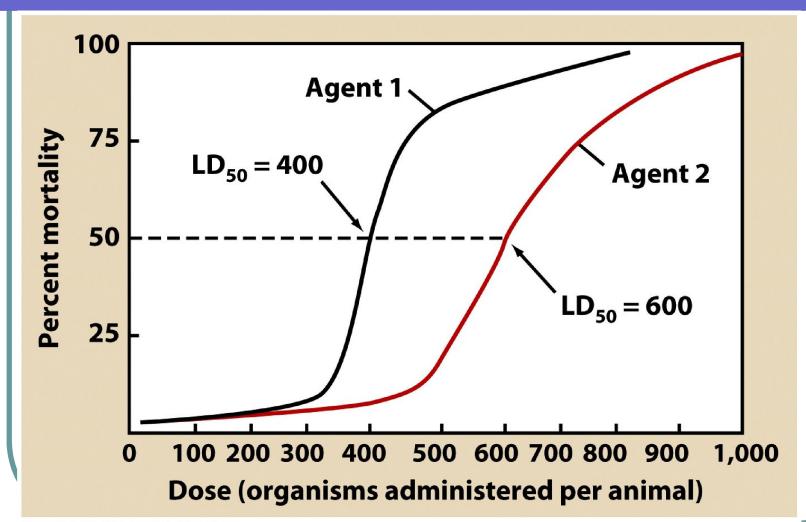


Figure 25.5 Microbiology: An Evolving Science © 2009 W. W. Norton & Company, Inc.